

Research Complex at Harwell <u>M. E. Potter</u>^{1,2}*, S. Mediavilla Madrigal^{2,3}, N. Schiaroli⁴, G. Fornasari⁴, P. Benito⁴ and A. M. Beale^{1,2}

Exploring Palladium-Indium systems for CO₂

Hydrogenation using Operando Spectroscopy

ALMA MATER STUDIORUM Università di Bologna ¹Chemistry Department, University College London, UK
 ²UK Catalysis Hub, Research Complex at Harwell, UK
 ³School of Chemistry, Cardiff University, UK
 ⁴Department of Industrial Chemistry, Università Bologna, Italy
 * <u>m.potter@ucl.ac.uk</u>

CO₂ Hydrogenation to Methanol

Converting CO₂ to methanol offers a sustainable pathway to many bulk chemicals, but this process is challenging, as high temperatures are needed to activate CO₂, but excessively high temperatures will form CO, not methanol.

Indium oxide is a selective CO₂ to methanol catalyst,^[1] as surface oxygen vacancies limit CO formation. Recent work has shown that *combining Palladium and Indium oxide* leads to a highly effective catalyst,^[2] though the interactions between the two species are not well understood.^[3]

Operando X-ray Absorption Studies at Diamond B18 of Pd-12ln₂O₃Al₂O3

PdO reduces to Pd Metal, with some PdO remaining

In shows a small decrease in In-O character, which stays on cooling, showing oxygen vacancies formed

Pd and In change at different rates,

suggests distinct sites? Under reaction conditions no real change in Pd or In environments.

Shows the active sites are *preformed during reduction*, but little change under reaction conditions

Operando DRIFTS at RCaH of Pd- $6\ln_2O_3$ -Al₂O₃

Conclusions

No evidence of alloying seen

References

[1] O. Martin *et al*, *Angew. Chem. Int. Ed.*, **2016**, *55*, 6261.
[2] M. S. Frei *et al*, *Nature Commun.*, **2019**, *10*, 3377.
[3] Schairoli *et al*, *Appl. Catal. B*, Under review.

Formate species form at low temperatures (150 °C)

At 20 bar of pressure

These are then converted to methoxy and methanol, as seen by GC-MS

Above 225 °C methane begins to form, in agreement with catalytic data

Pd splits H₂, while In₂O₃ vacancies activates CO₂

Species need to be in close proximity for this to occur

Further *operando* XRD measurements required to probe possible alloyed phases

Acknowledgements

We gratefully acknowledge the European Union's Horizon 2020 research and innovation programme for funding of the LAURELIN project (101022507), Diamond Light Source for EXAFS beamtime (B18, SP30647-1) and support, and the UK Catalysis hub for support and resources, funded by EPSRC Grants EP/R026939/1 and EP/R026815/1