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This presentation — elaborated by LAURELIN Consortium partner
University College London (UCL) — serves as a training material to develop
the next generation of stakeholders in the field of catalyst research.

This material falls under Objective 11 of the LAURELIN Grant Agreement.

For any question related to this training material, its content and/or other related questions please
contact the LAURELIN Consortium.
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Operando characterisation of supported
catalysts for methanol formation
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C02 utilisation
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Green

Methanol could influence
global C02 levels
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1 Need to capture an additional 20 gigatons
of CO2 every year before 2050

O Produce 1120 megatons of methanol every
year

O If all methanol was made from captured
CO2 this would use 1.5% of required
captured CO2
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Catalytic challenges

Low temperature or supress
RWGS needed
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Current methanol production

1 Cu-ZnO/Al, 0, is the primary methanol catalyst from syngas (CO/CO,/H,)
Typically Cu:Zn = 7:3, with 20 wt% AL O,

50-100 bar, 200-300 °C

 Can be used for CO, hydrogenation, but significantly worse conversion.

Equilibrium methanol yield from CO at 200 °C is 80%
Equilibrium methanol yield from CO, at 200 °Cis < 40%

4 Challenging to use pure CO, feedstock?
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Cu-Zn0 1i1ssues - RWGS

Cu/Zn s¥stems have high

RWGS selectivity
Table 4
Catalytic performance for CO, hydrogenation to methanol over Cu/Zn0/ZrO; catalysts.
Temperature (K) CO; equilibrium conversion (%) Sample CO;, conversion (%) Selectivity (C-mol%) STY of CH30H (gmL-"h-1)
CH3;0H Co
503 28.5 CZZ-0 16.7 54.7 453 0.14
CZZ-3 15.0 62.3 37.7 0.14
CZZ-5 154 66.8 33.2 0.16
CZz-7 144 60.9 39.1 0.13
523 258 CZZ-0 20.3 533 46.7 0.17
C7Z-3 20.0 57.4 42.6 0.18
CZZ-5 21.0 59.4 40.6 0.19
CZZ-7 19.4 56.5 435 0.17
543 246 CZZ-0 22.5 51.8 48.2 0.18
CZZ2-3 219 54.4 45.6 0.19
CZZ-5 23.0 56.8 43.2 0.21
Czz-7 21.7 53.3 46.7 0.18

Reaction conditions: P=5.0 MPa, n(H2):n(CO2)=3:1, GHSV=4600 h-1.
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Cu-Zn0 1issues - Stability

Cu sintering leads to

deactivation
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In,0;, as an alternative

In,0,has very high

methanol selectivity @) 08 = A
0507 3: ::zgzmo2 80
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In,0, forms

Two In,O, surfaces to consider

(a) InyO5(111) (b) Iny04(110)

1 Two common In,O, planes investigated in cubic Bixbyite.
U 111 is more thermodynamically stable, but 110 is more active.
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In,0, mode of activity

Indium vacancies lead
to activity

1 Surface defects on In203 lead to
In203-x, making it an n-type
semiconductor.

A EDAD S D
90809880
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U This creates binding opportunities for
COz2 leading to possible intermediate
species.

[ Too many vacancies lead to Ino, and
deactivation.
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In,0; mechanism
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Pd-1In,0,

Pd improves methanol

production
16 100
[ Total activity
O Pd improves In,O, performance, but ] 7/ MeOH activity
still debate on why? - @ MeOH selectivity
“ 12- 75
d Bimetallic PdIn phases known to =
form, but unsure if these help or S g &b
hinder. 3
)
. - ] 5
d Help: 3 4 2
o Wz iz i Gaigiin S |
d Hinder: In,O, In:Pd In:Pd In:Pd Pd

277 21 (1) (1:2)

Training Material - Operando characterisation of supported catalysts for methanol formation B

MeOH Selectivity (%)



Pd-In,0; synergy

Pd increases amount of
oxygen vacancies
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Pd-In,0;, synergy

PdIn hinders hydrogen

dissociation
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LAURELIN aims at

d Probe the mechanism and kinetics of methanol formation
d Design new operando characterisation tools to probe reactions

d Operando imaging to follow activation and deactivation phenomena

Characterisation

Catalyst
synthesis
High pressure DRIFTS
I High pressure EXAFS
Operando XRD
Catalyst
testing
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Laurelin Project

1. AIMPLAS (Spain)
Project Coordination. Catalyst
synthesis and conventional
reactor.

2. ITQ-CSIC (Spain) 3. UAL (Spain)
Catalyst and magnetic induction | Catalyst and downstream
reactor. processes.

AIMPLAS g 23 UNIVERSIDAD
WNSTITUTO TECNOLOGICO ot A L A DE ALMERIA

5. UCL (UK)

Advanced characterisation.

_*UCL

h| RRITEKLF

Tekyo Institute of Technelogy

7. PDC (Netherlands) g-TITECH (Japan)

Conceptual design, LCA and . .. Catalyst and conventional
. . IPR management
economic analysis. = | reactor.

4. UoM (UK)
MNon-thermal plasma reactor.

MANCHESTER

Microwave reactor.

~ Fraunhofer

IcT
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C' THE UNIVERSITY OF Toxvo

10. UT (Japan)
Catalyst and conventional
reactor.

Schematic overview of the LAURELIN Consortium
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Laurelin Project

.AIH INNOVATIONS

N

Schematic overview of the main innovations of the project
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MORE INFORMATION:

LAURELIN Coordination: laurelin_project@aimplas.es
Press & dissemination: cecile.fouguet@alienor.eu
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