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New generation of catalyst systems 

Advanced reactor systems

Microwave heating Magnetic induction Plasma induction
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Our role in the Laurelin project

Reaction 
performance

Catalyst 
property

Catalyst 
structure

Novel reactors require new catalysts

Operando experiments more relevant to reactor design
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Magnetic induction

Indirect thermal heating

More energy efficient

H2

CO2

CH3OH

Catalysts

Magnetic properties

Difficult to determine:

• Temperature of catalyst

• Any thermal gradients

X-ray Diffraction Computed 
Tomography (XRDCT)
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Operando magnetic induction: Co/C XRDCT

Determination of the operating temperature 
of the catalyst during magnetic induction 

experiments using XRDCT
BL scientist: Zoltan Hegedues

P21.2

Core (Co)

Shell (C)
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Carbon support



Operando magnetic induction: Co/C XRDCT

XRDCT performed on Co/C at 0% and 100% magnetic power. Get cross section of catalyst bed.

Creates sinogram, contains 85,000 XRD patterns!
Each vertical slices represents one horizontal line scan

Scan across reactor, rotate 360/n, repeat.
Rotational step size 1.1°

P21.2

Gas,
mass spec

Catalyst

Magnetic 
coils
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Operando magnetic induction: Co/C XRDCT

P21.2
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8mm2mm

Extract 1D patterns for any and 
every pixel.

XRDCT performed on Co/C at 0% and 100% magnetic power. Get cross section of catalyst bed.

Reconstruction

8BEAMSTOP Finden commercial software

Scan across reactor, rotate 360/n, repeat.
Rotational step size 1.1°



Operando magnetic induction: Co/C XRDCT

P21.2
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8mm2mm

Catalyst

XRDCT performed on Co/C at 0% and 100% magnetic power. Get cross section of catalyst bed.

Quartz

Average

9



Problem solving

P21.2

Approximately 4 mm inlet, 8 mm outlet for beam
- Qmax 7.25Å-1, required 90keV
- Small beam (27µm, slits)

4mm quartz total
- Again, high energy

Clipping Fe coils 
- Over-saturate detector (not healthy)
- Use absorbers to work out limits

Long path length (parallax)
- Measure full 360°
- Compare peak widths across reconstructed scan

4mm
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0% magnetic power
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Co fcc

Co

Stacking faults

PXRD of catalyst shows Co fcc reflections, intensity ratios indicate stacking faults.

Large broad reflections from partially crystalline carbon shell.

Representative image of one Co@C NP

PXRD of Co@C at room temperature, 90 keV, average 
integration from XRDCT

Refined pattern using GSAS II. 

Lattice param. 3.542 Å

Size 16 nm

M/D ratio 1.49

wR 10 %

P21.2



100% magnetic power

12

Peak asymmetry due to 
overlapping Co phases

Strong thermal gradients within 
the reactor.

Most thermally expanded Co in 
centre.

Reconstruct using intensity from specific 2θ positions



100% magnetic power
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From most shifted to least shifted Co

Repeated for room 
temperature sample to 

ensure not artifact of 
reconstruction



100% magnetic power
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Temporary/mild gradients common in conventional reactors
Use sinograms to see if temperature equilibrates

0 h                           3 h

Intensity from more expanded Co 
in centre of reactor.

Temperature gradient persists 
over 3 hours, doesn’t become 
homogeneous. Rapid and constant 
source of heat loss.

P21.2



Why gradients?
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• No external heating as for furnace type reactors
• Quartz walls acting as heat sink

>>T ΔT

P21.2

• So what is the actual temperature?



Thermal calibrations
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Thermal calibrations using same sample, high 
temperature cell belonging to Emma Gibson

Observed some non-linearity, likely due 
to small NPs and thick carbon shell. 

P21.2



Thermal calibrations
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Split the bed into 5 zones, integrate patterns only 
within these masks. 

Create 5 mean patterns at 5 different distances from 
centre of the bed

Lattice parameter (Å)

0% power 3.542

100% power 

Zone 1 3.578

Zone 2 3.576

Zone 3 3.573

Zone 4 3.565

Zone 5 3.555
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Thermal calibrations

P21.2
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Temperature variation of up to 340 °C across bed!
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Why we need XRDCT
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Operando point XRD, same catalyst, same set-up.

Increasing magnetic field strength during CO2 conversion.

P21.2



Why we need XRDCT
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Operando point XRD, same catalyst, same set-up.

Increasing magnetic field strength during CO2 conversion.

P21.2
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• As catalyst temperature increases, peak shape 
becomes asymmetric

• Overlap of differently expanded Co due to thermal 
gradients 



Why we need XRDCT
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• Fit multiple Co phases
• Majority of catalyst volume in cooler part 

of reactor
• Temperature is underestimated. 

Operando point XRD, same catalyst, same set-up.

Increasing magnetic field strength during CO2 conversion.

P21.2



Conclusions & next steps

Operando measurements allow understanding and 
improvement of catalysts and reactors

Especially necessary as catalysis aims to move away 
from conventional heating.
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We now know the temperature of the Co core

But how efficient is the heat transfer to the reacting species?

→ Compare temperatures of SiC and catalyst in a mixed bed

Next 
steps… Co

P21.2

Addition of simple heating 
jacket improves conversion 
by up to 14%

→ Heat mapping by XRDCT resulted in improved reactor design
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